logo
メッセージを送る
foshan nanhai ruixin glass co., ltd
私達について
あなたのプロフェッショナルで信頼できるパートナーです
Foshan Nanhai Ruixin Glass Co., Ltdは,2013年に設立され, Foshan にあります. テンプレートガラスにおける10年以上の経験,我々は良い品質の製品とサービスを提供します.国際的な認定証がありますCCC,CE,SGCCとSAI 5つの分業工場があり,それぞれ異なる製品があります:1つは浴室ガラス,1つは鏡,1つは大量生産 1つは装飾用アートガラス,1つは超大型の建築ガラス 工場は先端の硬化機器と技術を導入し 毎月60万平方メートルの硬化ガラスを生産しています 同時に工場にはガラスの深加工設備があります浴室用ガラスの製造を専門とする建築用ガラスやアートガラスです お客様の要求に応じてガラスを製造できます熱烈に歓迎します 顧客は,私たちを訪問し,より多くのビジネス機会を作成し, 市場を拡大し続けます....
もっと学びなさい

0

設立年:

0

数百万+
従業員

0

数百万+
顧客 に 奉仕 する

0

数百万+
年間売上:
中国 foshan nanhai ruixin glass co., ltd 高品質
信頼証券 信用チェック RoSH サプライヤーの能力評価 企業には厳格な品質管理システムと 専門的なテストラボがあります
中国 foshan nanhai ruixin glass co., ltd 開発
専門的な設計チームと 先進的な機械のワークショップ 必要な製品を開発するために協力することができます.
中国 foshan nanhai ruixin glass co., ltd 製造業
先進的な自動機械 厳格なプロセス制御システム 電気端末を全て 製造できます
中国 foshan nanhai ruixin glass co., ltd 100%のサービス
卸売品と小型のパッケージは FOB,CIF,DDU,DDPです 心配事項の最善の解決策を 見つけられるようにしましょう.

品質 造る緩和されたガラス & シャワーのガラス メーカー

自分 の 要求 に より 適した 製品 を 探す.
事件とニュース
最新 の 熱帯 地点
Fused Glass Art: The Poetic Flow and Eternal Craftsmanship
Fused Glass Art: The Poetic Flow and Eternal Craftsmanship In the vast realm of contemporary art and design, fused glass occupies a unique place with its distinctive charm. This art form, which involves shaping glass materials through high-temperature melting and molding, not only breaks the boundaries of traditional glass craftsmanship but also creates stunning visual and tactile experiences. Fused glass, particularly as an important branch of art glass, combines millennia of craft heritage with modern aesthetic demands, becoming an indispensable element in architectural decoration, interior design, and independent art pieces. Let us delve deeper into the characteristics, types, and manufacturing methods of fused glass, unveiling the radiant artistic veil of this medium.   1. Unique Characteristics of Fused Glass Art 1.1 Infinite Possibilities in Form Unlike cold-worked glass, fused glass softens at high temperatures (typically between 600°C and 900°C), allowing artists to shape it freely, much like sculptors. Its forms can be flat or three-dimensional, abstract or realistic, ranging from delicate wavy textures to spectacular three-dimensional reliefs, all reflecting the high malleability of art glass in terms of form.   1.2 Fusion and Transformation of Colors During the melting process, glass materials of different colors can blend with each other, creating natural and gradient color transitions that are difficult to achieve with other glass techniques. Chemical reactions of colorants such as metal oxides at high temperatures can produce a rich palette, ranging from clear transparency to deep, rich hues, giving each fused glass piece its own unique color story.   1.3 Unique Texture and Tactile Quality The surface of fused glass can exhibit a variety of textures, from smooth as a mirror to rough as stone, or somewhere in between. Controlled melting and cooling can create subtle bubbles, textures, or depressions on the glass surface. These "imperfections" often become the hallmark of its artistic character, offering rich tactile experiences and enhancing the interactivity and depth of the piece.   1.4 Exceptional Optical Expression When light passes through fused glass, it refracts, scatters, and reflects due to internal density variations, overlapping color layers, and surface textures, producing dreamlike light and shadow effects. As art glass, it is not merely a static object but also a medium for light, capable of displaying dynamic visual rhythms as the angle and intensity of light change.   1.5 Durability and Practicality Combined Despite its artistic forms, fused glass retains the hardness, corrosion resistance, and easy cleaning properties of glass. After annealing, its internal stresses are released, ensuring stability. It can be widely used in architectural facades, interior partitions, furniture surfaces, and outdoor installations, achieving a perfect unity of artistry and functionality. 2. Main Types of Fused Glass Art 2.1 Flat Fused Glass This is the most common form, where glass materials are melted into flat sheets in molds, often combined with various textures and colors. Widely used in decorative fields such as doors, windows, screens, and feature walls, it is a classic example of art glass that blends practicality and aesthetics.   2.2 Three-Dimensional Relief Glass Created by layering multiple glass sheets or melting them in specially designed relief molds, this type forms three-dimensional patterns. Under light and shadow, the patterns come to life, often used in high-end interior decoration or displayed as independent art sculptures.   2.3 Fused Stained Glass Colored glass pieces cut into shapes are fused together at high temperatures, achieving seamless transitions between color blocks. This technique inherits and innovates upon traditional stained glass craftsmanship, making it suitable for creating vibrant works such as murals, window designs, and lamps.   2.4 Flow Glass By intentionally controlling the flow of glass in its molten state, natural and free color movement patterns are formed, resulting in abstract and dynamic shapes. Each piece of flow fused glass is an unrepeatable work of natural art, highly favored by modern art enthusiasts.   2.5 Composite Fused Glass This type combines other materials, such as metal particles, ceramic pieces, or natural stones, with glass under high temperatures, creating unique aesthetics from mixed materials. This kind of art glass breaks the boundaries of single-material expression, expanding the dimensions of artistic creation. 3. Manufacturing Methods of Fused Glass Art 3.1 Design Concept and Material Selection The creation begins with the artist's inspiration and design sketches. Based on the design, the type of glass (e.g., transparent, colored, or sheet glass) and auxiliary materials are selected. Color matching, thickness, and form must be precisely planned at this stage to ensure the feasibility of subsequent processes.   3.2 Glass Cutting and Arrangement The selected glass is cut into the desired shapes and sizes and arranged in high-temperature-resistant molds (such as ceramic, plaster, or stainless steel molds). The layering order of multiple glass sheets or different colored glasses directly determines the final piece's depth and color effects.   3.3 High-Temperature Melting Process The arranged glass is placed in a specialized electric or gas kiln and slowly heated to the set temperature (typically between 750°C and 850°C, depending on the type and thickness of the glass). At this stage, the glass gradually softens and melts, taking shape within the mold. Precise control of temperature and time is crucial, forming the core of high-quality fused glass production.   3.4 Annealing Treatment The melted and shaped glass must undergo a slow, controlled cooling process—annealing—to eliminate internal stresses and prevent cracking due to uneven cooling. The annealing curve must be scientifically set, sometimes lasting several hours or even dozens of hours, to ensure the structural stability of the glass.   3.5 Cold Working and Finishing After annealing, the piece may require cold working treatments such as edge grinding, surface polishing, or cutting and shaping. For precision art glass, techniques like engraving or sandblasting may also be employed to enhance details, ensuring the final piece perfectly reflects the original design intent.   3.6 Quality Inspection and Installation The final step involves inspecting the finished product for light transmittance, structural integrity, and aesthetic effect. Qualified fused glass pieces are then delivered for professional installation, becoming eternal art that illuminates spaces. Evolving from ancient glass-firing techniques, fused glass has developed into a frontier discipline that combines science, craftsmanship, and art. It not only expands the expressive boundaries of glass as a material but also allows art glass to integrate into modern life in countless forms. Whether as a focal point in architectural spaces or a unique presence in homes, fused glass continues to convey the craftsmanship and creativity of this era through its warm texture, flowing colors, and ever-changing light and shadow. Tempered by flame and time, this fragile material is endowed with eternal vitality, becoming a tangible poem of light in our lives.

2025

12/10

Common Problems and Solutions of Glass Strengthening Furnaces
Common Problems and Solutions of Glass Strengthening Furnaces In the field of glass deep processing, the glass strengthening furnace is a core equipment for realizing strengthening treatments such as glass tempering and lamination. Its operating status directly determines the quality of finished glass products. However, in actual production processes, affected by various factors such as raw materials, operations, and equipment conditions, finished glass products often have various quality defects. Among them, the bubble phenomenon and poor adhesion are the two most common and seriously influential problems. This article will conduct a detailed analysis of the specific causes of these two major problems and provide scientific and implementable solutions to help enterprises improve the yield rate of glass strengthening processing.   I. Causes and Solutions for the Bubble Phenomenon in Finished Glass Products Bubbles are a high-frequency quality problem in glass strengthening processing, especially in the lamination strengthening process of tempered glass. The existence of bubbles will seriously damage the aesthetics and structural stability of glass, and may even lead to the scrapping of entire batches of finished glass products. Through long-term industry practice summary, there are mainly six causes for the occurrence of bubbles in finished glass products, each with clear corresponding solutions.   1. Uneven Surface of Glass In the lamination process of glass strengthening, the flatness of the glass surface is the basis for ensuring the close bonding between the laminated film and the glass. Especially for tempered glass, due to factors such as uneven cooling during its production process, slight surface unevenness or warpage may occur. When such uneven glass undergoes lamination strengthening, tiny gaps will form between the uneven parts and the film. The subsequent heating and pressing processes cannot completely expel these gaps, and finally, visible bubbles will form. For this problem, the most direct and effective solution is to increase the thickness of the film. The thicker film has stronger ductility and filling properties, which can better adapt to the uneven areas on the glass surface and fill the tiny gaps between the glass and the film, thereby reducing the generation of bubbles from the source. It should be noted that the increase in film thickness should be controlled within a reasonable range, which needs to be determined based on the actual unevenness of the glass and the requirements of the strengthening process, to avoid other quality problems caused by excessively thick films.   2. Uneven Thickness of the Film The film is the core bonding material for glass lamination strengthening, and the uniformity of its thickness directly affects the bonding effect between the glass and the film. In actual production, if the operators have misalignment, overlap, or splicing of the film when laying it, it will cause local excessive thickness of the film, while some areas may have insufficient thickness due to splicing gaps. After the film with uneven thickness is compounded with the glass, bubbles will form at the parts with sudden thickness changes due to inconsistent thermal shrinkage.​ To solve this problem, the key lies in standardizing the film laying operation and avoiding misalignment, overlap, or splicing of the film. Production enterprises should formulate strict film laying operation standards, requiring operators to ensure that the film completely covers the glass surface during operation, and that the entire film is flat without overlap or splicing gaps. For large-sized glass that requires coverage with multiple pieces of film, special butt-joint tools should be used to ensure uniform thickness at the film butt-joints, thus eliminating the bubble problem caused by uneven film thickness from the operational perspective.   3. Moisture in Laminated Decorations With the growing demand for decorative glass, many glass strengthening processes add various decorations (such as metal wires, colored paper sheets, dried flowers, etc.) into the lamination to improve the decorative value of the glass. However, if these laminated decorations are not fully dried before use, the residual moisture inside them will evaporate during the heating process of glass strengthening, forming water vapor. This water vapor is trapped between the glass and the film and cannot be discharged in time, eventually condensing into bubbles. At the same time, moisture may also affect the bonding performance of the film, causing multiple quality problems.​ In response to this, the corresponding solution is to fully dry the decorations. Enterprises should establish a pretreatment process for laminated decorations. Before putting the decorations into production, they should be professionally dried using drying equipment. Reasonable drying temperature and time should be set according to the material and moisture content of the decorations to ensure that the moisture inside the decorations is completely evaporated. For some decorations with strong water absorption, a second moisture test can be conducted after drying. Only when the decorations meet the standards can they be used for glass lamination strengthening, eliminating the hidden danger of bubbles caused by moisture from the raw material end.   4. Premature Shutdown of the Vacuum Pump The vacuum system of the glass strengthening furnace is crucial for ensuring no bubbles inside the laminated glass. Its function is to extract the air between the glass and the film to form a vacuum environment, so that the film can closely adhere to the glass during the subsequent heating and pressing processes. In the production process, if the operator is eager to complete the process and shuts down the vacuum pump before the temperature inside the furnace is completely reduced, the residual heat inside the furnace will cause the residual gas between the glass and the film to expand when heated. At the same time, after the vacuum environment is destroyed, external air may also infiltrate, and finally, bubbles will form in the finished glass products.​ To solve the bubble problem caused by this operational error, the solution is to strictly follow the start-stop specifications of the vacuum system, and only stop the vacuum pumping when the temperature drops below 40 degrees Celsius. Enterprises should install temperature monitoring and linkage control devices on the operation panel of the glass strengthening furnace. When the temperature inside the furnace does not drop below 40°C, the vacuum pump cannot be manually stopped. At the same time, training for operators should be strengthened to make them fully aware of the hazards of prematurely shutting down the vacuum pump, ensuring that each process is strictly implemented in accordance with the process parameters.   5. Vacuum Bag Leakage or Vacuum Pump Failure The vacuum bag is a core component of the glass strengthening furnace for realizing the vacuum environment, and the vacuum pump is the equipment that provides vacuum power. If either of them has a problem, it will lead to insufficient vacuum degree inside the furnace. When the vacuum bag has problems such as damage or poor sealing (resulting in air leakage), or the vacuum pump fails to reach the rated vacuum value due to parts aging or failure, the air between the glass and the film cannot be completely extracted. The residual air will expand when heated during the heating process, forming bubbles and seriously affecting the quality of the finished glass products. To solve this problem, efforts should be made from two aspects: equipment maintenance and performance guarantee, namely replacing the silicone bag, ensuring the operation of the vacuum pump, and increasing the vacuum degree to ≥0.094Mpa. On one hand, enterprises should regularly inspect the vacuum bag. Once problems such as damage or seal failure are found, the vacuum bag should be promptly replaced with a new silicone vacuum bag. At the same time, daily maintenance of the vacuum bag should be done well to extend its service life. On the other hand, a regular maintenance system for the vacuum pump should be established. The filter screen of the vacuum pump should be regularly cleaned, the lubricating oil should be replaced, and faulty parts should be repaired or replaced in a timely manner to ensure the stable operation of the vacuum pump. This will keep the vacuum degree inside the furnace at a standard value of 0.094Mpa or above, providing a reliable vacuum environment for the bubble-free processing of glass.   6. Excessively Fast Temperature Rise The heating rate of the glass strengthening furnace is a key process parameter affecting the fusion effect between the glass and the film. If the temperature rises too fast, it will cause uneven heating of the glass, the film, and the air inside the lamination. Especially for films of different materials, they require specific temperature ranges for softening and curing. An excessively fast temperature rise will cause the surface of the film to soften quickly, while the interior is not fully melted. At the same time, the air between the glass and the film cannot be discharged in time and is trapped inside, eventually forming bubbles.​ To solve the bubble problem caused by excessively fast temperature rise, the core is to slow down the temperature rise rate and adopt stepwise temperature rise, and formulate differentiated temperature rise and heat preservation curves according to different film materials. Specifically, if EVA film is used, it is necessary to first raise the temperature to 70°C and keep it warm for 10 to 15 minutes, then raise the temperature to 120°C and keep it warm for 40 to 50 minutes; if PEV film is used, it is required to first raise the temperature to 75°C and keep it warm for 10 to 20 minutes, then raise the temperature to 130°C and keep it warm for 30 to 60 minutes. It should be particularly noted that the heat preservation time depends on the thickness of the glass; the thicker the glass, the longer the required heat preservation time. This ensures that the glass and the film can be fully fused, and the air inside the lamination has sufficient time to be discharged, completely avoiding the generation of bubbles. II. Causes and Solutions for Poor Adhesion of Finished Glass Products In addition to the bubble problem, the poor adhesion of finished glass products is also a common problem in the processing of glass strengthening furnaces. Poor adhesion will cause problems such as degumming and delamination in the glass lamination, greatly reducing the impact resistance and service life of the glass, and failing to meet the safety performance requirements for glass in fields such as construction and decoration. Through industry practice analysis, the poor adhesion of finished glass products mainly stems from three aspects: processing technology, raw material quality, and glass pretreatment. The corresponding solutions are as follows.   1. Insufficient Processing Temperature or Heat Preservation Time In the lamination process of glass strengthening, temperature and heat preservation time are the core parameters determining whether the film can be fully cured and closely bonded to the glass. The adhesive performance of the film can only be fully activated within a specific temperature range and after sufficient heat preservation time. If the processing temperature of the glass strengthening furnace does not reach the standard value required by the process, or the heat preservation time is too short, the film cannot be fully melted and cured, and the intermolecular force between the film and the glass surface is insufficient. Eventually, this will lead to the poor adhesion of the finished glass products.​ To solve the problem of improper control of process parameters, the solution is to ensure the heating temperature and heat preservation time in accordance with the process requirements. Enterprises need to formulate an accurate parameter table of temperature and heat preservation time based on the material of the film used, the thickness of the glass, and the model of the strengthening furnace, and input these parameters into the intelligent control system of the glass strengthening furnace to realize the automatic and accurate control of temperature and time. At the same time, during the production process, a dedicated person should be arranged to monitor the temperature inside the furnace in real time, and the temperature sensor should be calibrated regularly to avoid substandard process parameters caused by equipment temperature measurement errors, ensuring that each batch of glass completes the strengthening processing under the temperature and heat preservation time that meet the requirements.   2. Film Failure As the core bonding material for glass lamination, the performance status of the film directly determines the bonding effect of the glass. If the film is stored in an improper environment (such as a long-term high-temperature, high-humidity environment or direct sunlight), it will cause premature aging and failure of the film; in addition, after the whole roll of film is opened, if it is not used up in time and not stored in a sealed manner, the film will absorb moisture and dust in the air. At the same time, the adhesive components inside the film will oxidize due to contact with air, resulting in a decrease in adhesive force. Using such failed films for glass strengthening processing will inevitably lead to the problem of poor adhesion.​ To avoid the quality hidden dangers caused by film failure, two aspects of work should be done well: first, ensure the film storage environment. Enterprises should establish a dedicated film storage warehouse, control the warehouse temperature at 5-25°C and the relative humidity at 40%-60%. At the same time, the film should be kept away from corrosive substances and direct sunlight. Second, standardize the film use process. After the whole roll of film is opened, it should be used up as soon as possible or stored in a sealed manner. For films that have been stored for a relatively long time, it is recommended to first make small samples to verify whether the adhesive force of the film is normal. The bonding firmness between the film and the glass can be tested by means of edge grinding treatment on the samples. Only when the samples meet the standards can the film be put into mass production.   3. Unclean Glass Surface The cleanliness of the glass surface is the prerequisite for ensuring good adhesion between the film and the glass. If there are impurities such as oil stains, dust, and fingerprints remaining on the glass surface, an isolation layer will be formed between the glass and the film, hindering the molecular bonding between the film and the glass surface, and further leading to the poor adhesion of the finished glass products. Especially in the pretreatment processes such as glass cutting and edge grinding, it is easy to leave processing debris and oil stains on the glass surface. If the glass enters the strengthening process without thorough cleaning, it will directly affect the final bonding effect.​ The key to solving this problem is to do a good job in the pretreatment cleaning of the glass and clean the oil stains and dust on the glass. Enterprises should establish a complete glass cleaning process. Before the glass enters the glass strengthening furnace, the surface floating dust should first be removed by a high-pressure air knife, then the surface should be wiped with a special glass cleaning agent to remove oil stains and stubborn dirt, and finally rinsed with pure water and dried to ensure that no impurities remain on the glass surface. At the same time, the cleaned glass should be well protected against dust to avoid re-contamination with dust during transportation and waiting for processing, creating a clean surface condition for the good adhesion between the film and the glass.

2025

12/08

曲面ガラスの熱曲げ加工の難しさ
曲面ガラスの熱曲げ加工の難しさ 家電製品、自動車のスマートコックピット、スマートホームなどの分野の急速な発展に伴い、曲面ガラス滑らかな外観、優れた光学性能、優れた保護機能により、多くのハイエンド製品の中核コンポーネントとなっています。熱曲げガラスは曲面ガラスの中核をなす生産プロセスであり、その成熟度が製品の品質と歩留まりに直接影響します。普通のアパートからガラスに熱で曲がったガラス複雑な曲面の要求を満たすために、成形プロセス全体には材料特性、温度制御精度、金型設計などの多次元の技術的課題が伴います。これらの困難は、業界の大規模で高品質な生産を制限する重要な要因にもなっています。   1. ガラス材料の特性によって引き起こされる基本的なプロセスの課題 物理的および化学的特性ガラスそれ自体が熱曲げ成形プロセスにおける最初の障害です。一般的に使用される熱曲げガラスは、主に高アルミニウムシリコンガラスまたはソーダ石灰ガラスです。このタイプのガラスは高い強度と光透過率を備えていますが、高温の熱曲げプロセス中にさまざまな欠陥が発生しやすくなります。まず、ガラスの熱膨張係数を合わせるという問題があります。異なるバッチからのガラス原板の熱膨張係数にはわずかな違いがあります。熱曲げ成形ではガラスを軟化点(通常600℃~750℃の範囲)まで加熱する必要があります。加熱速度が不均一であったり、温度が大きく変動したりすると、ガラスの熱膨張・収縮の度合いの違いにより内部応力が発生します。冷却後、反り、亀裂、さらには自然爆発などの問題が発生する可能性があります。のために曲面ガラス、その曲面半径や曲率の設計は大きく異なります。単一曲面、二重曲面、さらには3次元の特殊な形状の曲面もあります。このため、ガラスの延性に対して非常に高い要件が課されます。の形成熱で曲がったガラス本質的には、軟化した状態でのガラスの塑性変形が含まれます。ただし、ガラスは脆い素材です。変形過程において、局所的な応力が高すぎたり、材料の限界を超える伸びが生じたりすると、表面の傷、エッジの欠け、しわなどの欠陥が発生します。特に二重曲面の熱曲げガラスの場合、曲面のエッジや遷移領域での応力集中がより顕著になります。プロセスパラメータが適切に制御されないと、歩留まりが大幅に低下します。さらに、元のガラスシートの表面の清浄度も熱曲げ効果に影響します。オリジナルシートの表面にある微小な塵や油汚れは、高温でガラスと反応し、孔食や気泡などの欠陥を形成し、外観や性能に重大な影響を与えます。曲面ガラス。   2. 温度制御システムの精度不足による成形不良 温度制御はシステムの中核となるものです。 熱で曲がったガラス成形プロセスであり、克服するのが最も困難な技術的課題の 1 つです。曲面ガラスの熱曲げ成形は、予熱、加熱、保温、成形、冷却といった複数の段階を経ます。各段階には、温度範囲と加熱/冷却速度に関する厳しい要件があります。現在、ほとんどの熱曲げ装置は一体型温度制御システムを採用していますが、金型のさまざまな領域で正確な温度制御を実現するのは困難です。ただし、異なる部分は、曲面ガラス(アークトップ、アークエッジ、平らな遷移領域など) は、成形プロセス中に異なる量の熱を必要とします。温度分布が不均一であると、ガラスの各部位の軟化度が不均一となり、成形後の曲面半径のばらつきや肉厚の不均一などの問題が発生します。3Dの撮影曲面ガラスたとえば、エッジを 90° に近い角度に曲げる必要があり、この領域ではガラスを完全に軟化させるためにより高い温度が必要です。ただし、中平部の温度が高すぎると軟化しすぎて崩れやすくなります。温度制御システムの精度が±5℃に達すると、複雑な曲面の成形要件に対応できなくなり、完成品の寸法公差を業界標準の±0.05mm以内に管理することが困難になります。同時に、冷却段階での速度制御も重要です。急冷すると内部に大きな熱応力が発生します。熱で曲がったガラスガラスの微細な亀裂につながります。一方、冷却が遅すぎると生産効率が低下したり、長時間高温にさらされることでガラスが結晶化し、光線透過率やガラスの強度に影響を与える場合があります。さらに、温度制御システムの安定性も非常に重要です。装置を長時間運転した後に温度ドリフトが発生すると、成形品質が低下します。曲面ガラス同じバッチ内の品質にばらつきが生じ、その後の品質検査とスクリーニングに大きな圧力がかかります。   3. 金型設計と適応性における技術的なボトルネック 金型は、成形のための重要なキャリアです。 熱で曲がったガラス。設計の合理性と材料の適応性は、最終的な成形効果に直接影響します。曲面ガラス、これは業界における長年の技術的なボトルネックでもあります。まず、金型の材料選定ですが、金型は高温高圧の環境下で繰り返し作業する必要があります。優れた耐高温性と耐摩耗性を備えているだけでなく、ガラスとの密着性が低いことも保証する必要があります。初期の熱曲げ金型には主にグラファイト材料が使用されていました。グラファイトモールドは熱伝導性が高く、高温耐性に優れていますが、硬度は低いです。長期間使用すると摩耗や変形が起こりやすく、寸法精度が低下します。曲面ガラス。ニューセラミックモールドは硬度が高く、耐摩耗性に優れていますが、熱伝導率が低く、ガラスの均一な加熱に影響を与えます。さらに、コストが高いため、大規模に宣伝することが困難になります。第二に、金型構造設計の観点から、金型の曲面形状は、曲面ガラスは多様です。金型キャビティは、曲率半径、円弧の高さ、開口角度など、製品の曲面パラメータと完全に一致する必要があります。わずかな設計ミスでも故障の原因となります。熱で曲がったガラス成形後の曲面が不均一になる。同時に、金型の排気構造の設計も特に重要です。形成過程において、熱で曲がったガラス, 型とガラスの間に空気が残ります。排気がスムーズでないと高温の空気が圧縮されてガラス表面に気泡ができたり、凹みができて表面の平坦度が損なわれます。曲面ガラス。また、金型とガラスの接触方法も成形品質に影響を与えます。ハードコンタクトではガラス表面に傷がつきやすく、ソフトコンタクトでは材質の耐高温性不足により固着が発生する可能性があります。金型設計においては、接触方法と成形効果をいかにバランスさせるかが大きな問題となります。量産の場合は金型の寿命や交換コストも考慮する必要があります。高精度の金型一式は高価であり、寿命が短いと製造コストが大幅に上昇します。熱で曲がったガラス。 4. 後処理技術の技術的欠点のサポート 後熱で曲がったガラス 形成されても、そのまま完成品になるわけではありません。さらに、研削、研磨、強化などの一連の後処理手順を経る必要があります。それを支える後加工技術の技術的欠点も、製品の品質向上を制限する重要な要因となっています。曲面ガラス。の表面 曲面ガラス熱曲げ加工の際、どうしても多少の傷や凹凸が生じてしまうため、表面仕上げを良くするために研削・研磨が必要となります。しかし、曲面の不規則な形状により、研削や研磨には大きな課題が生じます。従来の平面研削装置では複雑な曲面形状に対応できず、専用の曲面研削装置は高価なだけでなく、研磨効率の低さや面粗さの制御が難しいなどの問題がありました。研磨がされていない場合、光の透過率が低下します。熱で曲がったガラス影響を受け、家電製品などのハイエンド分野の外観要件も満たせなくなります。強化処理は強度を向上させるための重要なプロセスです熱で曲がったガラス。化学強化または物理強化により、ガラス表面に圧縮応力層が形成され、ガラスの耐衝撃性や耐曲げ性が大幅に向上します。ただし、強化治療は、曲面ガラス 板ガラスよりもずっと難しいです。化学強化中、ガラスの湾曲した形状によりイオン交換の均一性が低下します。アークエッジ領域の強化層の厚さは、多くの場合、平坦領域の強化層よりも薄いため、エッジが曲面ガラス強度の弱点。一方、物理強化では、曲面ガラスに不均一な応力がかかるため、強化後に曲面が変形しやすくなります。さらに、熱曲げガラスの後処理手順間のつながりも重要です。研削後にガラスを適切に洗浄しないと、残った研削液が強化効果に影響を与えます。強化後にガラスに寸法の偏差がある場合、二度修正することはできず、廃棄するしかないため、全体の歩留まりがさらに低下します。 曲面ガラス。   5. 業界の発展におけるプロセスアップグレードの課題 市場の需要が継続的に向上しているため、曲面ガラス、の形成プロセス熱で曲がったガラスも新たな課題に直面しています。一方で、家電分野では曲面ガラスの薄さと軽さに対する要求がますます高まっています。厚みは当初の0.7mmから0.3mm、さらにはさらに薄くなりました。極薄ガラスは熱曲げプロセス中に変形や亀裂が発生しやすいため、プロセスの安定性と精度に対してより高い要件が求められます。一方で、曲面ガラス自動車分野では大型化、複雑な曲面化が進んでいます。例えば、車載用大型スクリーンに使用される3D曲面ガラスには、大型サイズの成形要件を満たすだけでなく、耐紫外線性や防眩性などの特殊な性能も求められます。これには、オリジナルシートの選択と成形プロセスに、より機能的な技術を統合する必要があります。 熱で曲がったガラス.同時に、グリーンで環境に優しい生産という概念は、製品の新しい基準も提案しました。熱で曲がったガラスプロセス。従来のプロセスで使用される離型剤や洗浄剤の中には環境リスクを伴うものがあるため、より環境に優しい代替材料を開発する必要があります。ただし、これは成形品質と生産効率に影響を与える可能性があります。 曲面ガラス。さらに、インテリジェント生産のトレンドにより、熱で曲がったガラス自動検査やビッグデータ解析などの技術を活用し、生産プロセスのリアルタイム監視とパラメータの最適化を実現します。しかし、ほとんどの企業の設備とシステムはまだインテリジェントなアップグレードを完了していないため、全プロセスの品質トレーサビリティとプロセスの反復を実現することが困難になっています。   結論 の中核となる製品として 曲面ガラス、プロセスの困難さ熱で曲がったガラス 原材料から後加工までの生産プロセス全体を実行し、材料、温度制御、金型、後加工などの複数の技術的側面を含みます。下流アプリケーション分野の急速な発展に伴い、市場の需要は曲面ガラス成長を続ける中、製品の品質や工程レベルに対する要求はますます厳しくなっています。温度制御精度、金型設計、後処理サポートなどの技術的なボトルネックを継続的に突破し、インテリジェントでグリーンな生産の概念を統合することによってのみ、システムの継続的なアップグレードを促進できます。熱で曲がったガラス 成形加工において、さまざまな業界の多様化する高品質なニーズに応えます。曲面ガラス、業界が高品質の発展を達成できるよう支援します。

2025

12/06